The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiromasa HABUCHI(30hit)

1-20hit(30hit)

  • Optical Wireless N-CSK with Modified Pseudo Orthogonal M-Sequence Sets

    Yusuke KOZAWA  Hiromasa HABUCHI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E94-A No:11
      Page(s):
    2188-2193

    In this paper, N-CSK (N parallel Codes Shift Keying) using modified pseudo orthogonal M-sequence sets (MPOMSs) to realize the parallel combinatory spread spectrum (PC/SS) communication system for the optical communications is proposed. Moreover, the upper bound of data transmission rate and the bit error rate (BER) performance of this N-CSK system using the chip-level detection are evaluated through theoretical analysis by taking into account the scintillation, background-noise, avalanche photo-diode (APD) noise, thermal noise, and signal dependence noise. It is shown that the upper bound of data transmission rate of the proposed system is better than those of OOK/CDM and SIK/CDM. Moreover, the upper bound of data transmission rate of the proposed system can achieve about 1.5 [bit/chip] when the code length of MPOMS is 64 [chip].

  • Influence of Phase Difference between the Groups on BER Performance in the 2M-Plex System

    Hiromasa HABUCHI  Takaaki HASEGAWA  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    748-750

    Recently, there has been increasing interest in Code Division Multiplex (CDM) systems. We reported the CDM system using the -chip shift multiplex operation. So far the performance of this system evaluated under the optimum . In this letter, we evaluate an influence of the phase difference between the groups on BER performance in 2M-plex system.

  • FOREWORD

    Hiromasa HABUCHI  

     
    FOREWORD

      Vol:
    E99-A No:1
      Page(s):
    158-158
  • FOREWORD

    Hiromasa HABUCHI  

     
    FOREWORD

      Vol:
    E100-A No:1
      Page(s):
    184-184
  • Synchronization Method Using Several Synchronizing Chips for M-ary/SS Communication System

    Kouji OHUCHI  Hiromasa HABUCHI  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    1988-1993

    In this paper, a simple frame synchronization system for M-ary/SS communication systems is proposed, and synchronization performance and the resulting bit error rate performance are analyzed. The frame synchronization system uses racing counters and framing chips which are added to spreading sequences. M-ary/SS communication systems can improve bit error rate performance under the condition in which there is an additive white gaussian noise. Synchronization of M-ary/SS communication systems is difficult, however, because M-ary/SS communication systems have several spreading sequences. The authors proposed the simple frame synchronization system which uses only one chip in the spreading sequence as a framing signal. This system needs a long time for initial acquisition as the frame length is longer. The proposed system in this paper can make initial acquisition time short by increasing the number of framing chips. The proposed system corresponds to the conventional system when the number of framing chips is l. As the result, it is shown that several framing chips contribute to decrease the initial acquisition time. Moreover, the frame synchronization system can be applied to asynchronous M-ary/SSMA system when different framing chip pattern is assigned to each user.

  • Analysis of BER Performance of the Spread Spectrum Communication System with Constrained Spreading Code

    Hiromasa HABUCHI  Toshio TAKEBAYASHI  Takaaki HASEGAWA  

     
    LETTER

      Vol:
    E79-A No:12
      Page(s):
    2078-2080

    In this paper, the bit error rate (BER) performance of the Spread Spectrum communication system with Constrained Spreading Codes (SS-CSC) is analyzed. The BER of the SS-CSC system is the same as that of the Bi-orthogonal system. Moreover, the frequency utilization efficiency of the SS-CSC system is better than that of the Bi-orthogonal system when K 10 and N = 3.

  • FOREWORD

    Makoto ITAMI  Hiromasa HABUCHI  

     
    FOREWORD

      Vol:
    E95-A No:1
      Page(s):
    270-270
  • A New Modulation Technique Based on Pulse Position Modulation and Code Shift Keying

    Fumie ONO  Hiromasa HABUCHI  

     
    PAPER-Communication Systems

      Vol:
    E86-A No:10
      Page(s):
    2483-2491

    A Time Hopping Pulse Spacing Modulation (TH-PSM) system, which combines the pulse position modulation system with code shift keying, is proposed. The following performances are analyzed; (1) data transmission rate, (2) error rate in a single-user case, (3) error rate in a multi-user case, and (4) spectral efficiency. Consequently, the data transmission rate of the proposed system is higher than that of the conventional Spread Spectrum Pulse Position Modulation (SS-PPM) system. The proposed system can improve the probability of block error by increasing the number of information bits per spreading code. Moreover, the spectral efficiency of the proposed system is higher than that of the conventional system. The proposed system is more attractive than the conventional SS-PPM system for optical communications, power-line communications, and UWB communications.

  • CSK/SSMA ALOHA System with Nonorthogonal Sequences

    Nobuyoshi KOMURO  Hiromasa HABUCHI  Masaru KAMADA  

     
    PAPER-Spread Spectrum Thchnologies and Applications

      Vol:
    E87-A No:10
      Page(s):
    2564-2570

    In this paper, the CSK/SSMA ALOHA system with nonorthogonal sequences which combines the ALOHA system with Code Shift Keying (CSK) using nonorthogonal sequences is proposed. The throughput performance was evaluated by theoretical analysis. Moreover, the throughput performance of the system is compared with those of the DS/SSMA ALOHA and M-ary/SSMA ALOHA systems. It is found that the throughput performance of our system to be better than those of the other two systems.

  • Theoretical Analysis on Bit Error Rate of Visible-Light Variable N-Parallel Code-Shift-Keying

    Keisuke OSAWA  Hiromasa HABUCHI  Yusuke KOZAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2352-2358

    Lighting constrained visible-light communications are expected as indoor communications of next generation. In lighting constrained visible-light communications, lighting devices are used not only for illuminating rooms but also for optical wireless communications. For lighting constrained visible-light communications, we have been proposed a variable N-parallel code-shift-keying (VN-CSK) using a modified prime sequence code (MPSC). The VN-CSK system using MPSC has not only a suppression function for reducing co-channel interference from neighboring lighting devices, but also a function for keeping constant data transmission regardless of dimming control. In this paper, the bit error rate (BER) of the VN-CSK system using MPSC is derived under an indoor visible-light communication channel by theoretical analysis. Moreover, we evaluate the BER performance for the brightness level (dimming control stage).

  • Performance of DS/SS System Using Pseudo-Ternary M-Sequences

    Ryo ENOMOTO  Hiromasa HABUCHI  Koichiro HASHIURA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E93-A No:11
      Page(s):
    2299-2306

    In this paper, newly-found properties of the pseudo-ternary maximum-length shift register sequences (pseudo-ternary M-sequences) are described. In particular, the balance properties, the run-length distribution, the cross-correlation properties, and the decimation relationships are shown. The pseudo-ternary M-sequence is obtained by subtracting the one-chip shifted version from the {+1,-1}-valued M-sequence. Moreover, in this paper, performances of the direct sequence spread spectrum (DS/SS) system using the pseudo-ternary M-sequence are analyzed. In the performance evaluation, tracking error performance (jitter) and bit error rate (BER) performance that takes the jitter into account in DS/SS system with a pseudo-ternary M-sequence non-coherent DLL are evaluated. Using the pseudo-ternary M-sequence instead of the conventional M-sequences can improve the tracking error performance about 2.8 [dB]. Moreover, BER of the DS/SS system using the pseudo-ternary M-sequence is superior about 0.8 [dB] to that using the {+1,-1}-valued M-sequence.

  • A Reasonable Throughput Analysis of the CSK/SSMA Unslotted ALOHA System with Nonorthogonal Sequences

    Nobuyoshi KOMURO  Hiromasa HABUCHI  

     
    PAPER

      Vol:
    E88-A No:6
      Page(s):
    1462-1468

    In this paper, the throughput performance of the CSK/SSMA ALOHA system with nonorthogonal sequences which combines the ALOHA system with Code Shift Keying using nonorthogonal sequences is analyzed. In this system, the nonorthogonal sequences are constructed by concatenating Mcon orthogonal sequences. The throughput performance of the CSK/SSMA ALOHA system with nonorthogonal sequences is analyzed in consideration that the number of packets changes at intervals of one orthogonal sequence. Moreover, the throughput performance of our system with Channel Load Sensing Protocol (CLSP) is also analyzed. We also examine the influence of unreachable control signal of CLSP. Consequently, it is found that the throughput performance of our system decreases significantly by this analysis. It is also found that the throughput performance of our system improves greatly by using CLSP. However, the unreachable control signal affects the throughput performance of this system, seriously.

  • Construction of Orthogonal Overlapping Pulses for Impulse Radio Communications

    Masaru KAMADA  Semih OZLEM  Hiromasa HABUCHI  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3121-3129

    A procedure is developed to construct a time-limited pulse for its use in the short-range impulse radio communications. The even-numbered shifts of the pulse constitute a train of overlapping pulses. The pulses are intentionally made orthogonal to the second derivative of one another. This orthogonality makes it possible to detect the received pulses, which are assumed to be the second derivative of the transmitted pulses, by means of correlation with the original pulses. An example pulse is presented that complies with the FCC regulation for indoor ultra-wide bandwidth radio communications.

  • Nonorthogonal CSK/CDMA with Received-Power Adaptive Access Control Scheme

    Nobuyoshi KOMURO  Hiromasa HABUCHI  Toshinori TSUBOI  

     
    PAPER-Communication Theory

      Vol:
    E91-A No:10
      Page(s):
    2779-2786

    The measurements for Multiple Access Interference (MAI) problems and the improvement of the data rate are key issues on the advanced wireless networks. In this paper, the nonorthogonal Code Shift Keying Code Division Multiple Access (CSK/CDMA) with received-power adaptive access control scheme is proposed. In our system, a user who is ready to send measures the received power from other users, and then the user decides whether to transmit or refrain from transmission according to the received power and a pre-decided threshold. Not only overcoming the MAI problems, but our system also improve the throughput performance. The throughput performance of the proposed system is evaluated by theoretical analysis. Consequently, the nonorthogonal CSK/CDMA system improves by applying received-power adaptive access control. It was also found that the throughput performance of the nonorthogonal CSK/CDMA system is better than that of the orthogonal CSK/CDMA system at any Eb/N0. We conclude that the nonorthogonal CSK/CDMA system with received-power adaptive access control scheme is expected to be effective in advanced wireless networks.

  • A Comparison of Wireless Optical CDMA Systems Using Chip-Level Detection

    Yusuke KOZAWA  Hiromasa HABUCHI  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E93-A No:11
      Page(s):
    2291-2298

    In this paper, the optimum combination of optical pseudo-noise (PN) code and modulation scheme to achieve high total data transmission rate is presented. Moreover, the bit error rate (BER) performance of a wireless OCDMA system using chip-level detection is evaluated through theoretical analysis in the multi-user case. It is shown that, in a wireless OCDMA system with chip-level detection, the total data transmission rate of a multi-pulse pulse position modulation (MPPM) systems with optical pseudo-noise code generated by an M-sequence is better than that of an MPPM system with optical orthogonal code and that of an MPPM system with an extended prime code sequence. Moreover, the total data transmission rate of an MPPM/SIK system using modified pseudo orthogonal M-sequence sets can achieve more than 1.0 [bit/chip].

  • Theoretical Analysis of New PN Code on Optical Wireless Code-Shift-Keying

    Yusuke TAKAMARU  Sachin RAI  Hiromasa HABUCHI  

     
    PAPER-Sequences

      Vol:
    E97-A No:12
      Page(s):
    2572-2578

    A code shift keying (CSK) using pseudo-noise (PN) codes for optical wireless communications with intensity/modulation and direct detection (IM/DD) is considered. Since CSK has several PN codes, the data transmission rate and the bit error rate (BER) performance can be improved by increasing the number of PN codes. However, the conventional optical PN codes are not suitable for optical CSK with IM/DD because the ratio of the number of PN codes and the code length of PN code, M/L is smaller than 1/√L. In this paper, an optical CSK with a new PN code, which combines the generalized modified prime sequence code (GMPSC) and Hadamard code is analyzed. The new PN code can achieve M/L=1. Moreover, the BER performance and the data transmission rate of the CSK system with the new PN code are evaluated through theoretical analysis by taking the scintillation, background-noise, avalanche photodiode (APD) noise, thermal noise, and signal dependent noise into account. It is found that the CSK system with the new PN code outperforms the conventional optical CSK system.

  • Optical Wireless LDGM-BPPM with Unequal Transmission Power Allocation Scheme

    Kyohei SUMIKAWA  Hiromasa HABUCHI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E97-A No:12
      Page(s):
    2579-2585

    In this paper, the low density generator matrix (LDGM) coded scheme with unequal transmission power allocation (UTPA) in optical wireless channel is evaluated by computer simulation. In particular, the bit error rate performance of the LDGM-coded binary pulse position modulation (LDGM-BPPM) with the UTPA scheme is investigated in the presence of avalanche photo diode (APD) noise, scintillation and background noise. Consequently, the BER performance of the LDGM-BPPM with UTPA is better than that of the conventional LDGM-BPPM. It is found that there is the optimum power ratio (R). The optimum R varies with scintillation and background noise. For example, when the average received laser power is -47[dBm], the variance of scintillation is 0.1, and background noise is -45[dBm], the optimum R is 3.1. Thus, the LDGM-BPPM with the UTPA scheme is superior to the conventional LDGM-BPPM system.

  • Embedded Frame Synchronization Method for Pulse Position Modulation System

    Fumie ONO  Hiromasa HABUCHI  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1757-1760

    The objective of this paper is to propose the Pulse Position Modulation (PPM) system which embeds the synchronizing signal in the information frame. In the proposed system, the frame for transmitting information is also the frame for acquiring frame timing. The data transmission rate of the proposed system is independent of the length of the synchronization signal because the proposed system does not require the synchronization frame. The data transmission rate and the synchronization performance for the proposed system are better than those of the conventional system.

  • Bi-Orthogonal Modulation Systems Using Two Different Inner Sequences

    Kouji OHUCHI  Hiromasa HABUCHI  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    2976-2982

    In this paper, we describe a frame synchronization method for bi-orthogonal modulation systems. In bi-orthogonal modulation systems, several bi-orthogonal sequences are used for data transmission. Frame synchronization in bi-orthogonal modulation systems is difficult because transmitted sequences can change every frame. In the proposed method, each bi-orthogonal sequence consists of two different inner sequences. Each bi-orthogonal sequence has the same arrangement of two different inner sequences. A receiver can track the frame timing by observing the arrangement of inner sequences. In this paper, we analyze the bit error rate performance that takes into account the tracking performance of a system we developed based on our method. The spectral efficiency of the proposed system in code division multiple access (CDMA) systems is also investigated. As a result, we found that the proposed system is effective in synchronous CDMA systems.

  • Bit Error Rate of Bi-orthogonal Systems Considering Synchronization Performance

    Hiromasa HABUCHI  Shun HOSAKA  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    1982-1987

    In this paper, the bit error rate (BER) considering tracking performance is evaluated, by theoretical analysis and computer simulation, for a bi-orthogonal system using a synchronizing pseudo-noise (PN) sequence and co-channel interference cancellers. A system that improves on Tachikawa's system is proposed. It is found that the optimum ratio of the information signal energy to the synchronizing signal energy varies with Eb/No, and the canceller is better for small L than for large L (L = length of the sequence). Moreover, it is found that the BER considering synchronization performance improvse as the equivalent noise bandwidth Bn decreases.

1-20hit(30hit)